Backpropagation and Recurrent Neural Networks in Financial Analysis of Multiple Stock Market Returns

نویسندگان

  • Jovina Roman
  • Akhtar Jameel
چکیده

We propose a new methodology to aid in designing a portfolio of investment over multiple stock markets. It is our hypothesis that financial stock market trends may be predicted better over a set of markets instead of any one single market. A selection criteria is proposed in this paper to make this choice effectively. This criteria is based upon the observed backpropagation and recurrent neural networks prediction accuracy, and the overall change recorded in the previous year. The results obtained when using data for four consecutive years over five international stock markets supports our claim. Backpropagation nehvorks use gradient descent to learn spatial relationships. On the other hand, recurrent networks are capable of capturing spatiotemporal information from training data. This paper analyzes application of recurrent networks to the stock market return prediction problem in contrast with backpropagation networks. On the basis of the results observed during these experiments it follows that the effect of learning temporal information was not substantial on the prediction accuracy for the stock market returns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods...

متن کامل

Chaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements

For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual fin...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

A Comparative Study of Backpropagation Algorithms in Financial Prediction

Stock market price index prediction is a challenging task for investors and scholars. Artificial neural networks have been widely employed to predict financial stock market levels thanks to their ability to model nonlinear functions. The accuracy of backpropagation neural networks trained with different heuristic and numerical algorithms is measured for comparison purpose. It is found that nume...

متن کامل

رتبه بندی شرکت ها بر اساس شاخص های مالی و بررسی رابطه آن با بازده سهام در بورس اوراق بهادار تهران

The importance of information in the field of stock returns predictions has promoted many researchers to follow and find the variables and the indexes which have significant relationship with stock returns. This information can be divided into two separate categories of financial and non-financial information. The final results obtained from several researches in this area confirm that both fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996